Chain Rule

-We can find the derivative of $y = \sin(x)$.

-We can also find
$$\frac{dy}{dx}$$
 of $x^2 - 4$

- -But what about $y = \sin(x^2 4)$
- -For this we need the Chain Rule, one of the most widely used rules.

Example

The function y = 6x - 10 = 2(3x - 5) is the composition of

$$y = 2u \qquad \qquad u = 3x - 5$$

How are the 3 derivatives related?

$$\frac{dy}{dx} = 6$$
 $\frac{dy}{du} = 2$ $\frac{du}{dx} = 3$

Since, $6 = 3 \cdot 2$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Example

The polynomial $y = 9x^4 + 6x^2 + 1 = (3x^2 + 1)^2$ is the composition of $y = u^2$ and $u = 3x^2 + 1$.

-Calculating the derivatives we get

$$\frac{dy}{du} \bullet \frac{du}{dx} = 2u \bullet 6x$$

$$= 2(3x^2 + 1) \bullet 6x = 36x^3 + 12x$$

Also,

$$\frac{dy}{dx} = \frac{d}{dx} \Big(9x^4 + 6x^2 + 1 \Big)$$

$$=36x^3+12x$$

Again,

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

-The derivative of the composition function f(g(x)) at x is the derivative of f at g(x) times the derivative of g at x.

The Chain Rule

If f is differentiable at the point u=g(x), and g is differentiable at x, then the composite function $(f\circ g)(x)=f(g(x))$ is differentiable at x and

$$(f \circ g)'(x) = f'(g(x)) \circ g'(x)$$

-In Leibniz Notation if y = f(u) and u = g(x) then

$$\frac{dy}{dx} = \frac{dy}{du} \bullet \frac{du}{dx}$$

where $\frac{dy}{du}$ is evaluated at u = g(x).

Example

-An object moves along the x-axis so that its position at any time $t \ge 0$ is given by $x(t) = \cos(t^2 + 1)$. Find the velocity of the object as a function of t.

-We know velocity is
$$\frac{dx}{dt}$$

$$x = \cos(u) \qquad u = t^2 + 1$$

$$\frac{dx}{du} = -\sin u$$

$$\frac{du}{dt} = 2t$$

By the chain rule

$$\frac{dx}{dt} = \frac{dx}{du} \cdot \frac{du}{dt}$$

$$= -\sin(u) \cdot 2t$$

$$= -\sin(t^2 + 1) \cdot 2t$$

$$= -2t \sin(t^2 + 1)$$

Repeated Use of the Chain Rule

-We can use the chain rule 2 or more times to find a derivative as needed.

Example-3 linked chains

Find
$$g'(t)$$
 given $g(t) = \tan(5 - \sin 2t)$

$$g'(t) = \frac{d}{dx} \left(\tan(5 - \sin 2t) \right)$$

$$= \sec^2 \left(5 - \sin 2t \right) \cdot \frac{d}{dt} \left(5 - \sin 2t \right)$$

$$= \sec^2 \left(5 - \sin 2t \right) \cdot \left(0 - \cos 2t \cdot \frac{d}{dt} \left(2t \right) \right)$$

$$= \sec^2 \left(5 - \sin 2t \right) \cdot \left(\cos 2t \cdot 2 \right)$$

$$= -2\cos(2t)\sec^2 \left(5 - \sin 2t \right)$$

Slopes of Parameterized Curves

Finding
$$\frac{dy}{dx}$$
 Parametrically

If all three derivatives exist
$$\frac{dy}{dx}$$
, $\frac{dx}{dt}$, $\frac{dy}{dt}$ and $\frac{dx}{dt} \neq 0$

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$

<u>Example</u>

Find the line tangent to the right-hand hyperbola branch defined parametrically by

$$x = \sec t$$
 $y = \tan t$ $-\pi/2 < t < \pi/2$

at the point $(\sqrt{2},1)$ where $t = \pi/4$.

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$

$$=\frac{\sec^2 t}{\sec t \tan t}$$

$$=\frac{\sec t}{\tan t}=\csc t$$

Setting $t = \pi/4$ gives

$$=\csc\left(\pi/4\right)=\sqrt{2}$$

The equation of the tangent line is

$$y - 1 = \sqrt{2} \left(x - \sqrt{2} \right)$$
$$y = \sqrt{2}x - 1$$

Power Chain Rule

If f is a differentiable function of u, and u is a differentiable function of x, then substituting y = f(u) into the Chain Rule formula

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

leads to the formula

$$\frac{d}{dx}f(u) = f'(u)\frac{du}{dx}$$

Power Chain Rule

$$\frac{d}{dx}u^n = nu^{n-1}\frac{du}{dx}$$

Example

-Find the slope of the line tangent to the curve $y = \sin^5 x$ at the point where $x = \pi/3$.

$$\frac{dy}{dx} = 5\sin^4 x \bullet \frac{d}{dx}\sin x$$

$$=5\sin^4 x \cos x$$

The tangent line has the slope

$$=5\left(\frac{\sqrt{3}}{2}\right)^4\left(\frac{1}{2}\right)=\frac{45}{32}$$

Example

-Show that the slope of every line tangent to the curve $y = \frac{1}{\left(1 - 2x\right)^3}$ is positive.

$$\frac{dy}{dx} = \frac{d}{dx} \left(1 - 2x \right)^{-3}$$

$$=-3\left(1-2x\right)^{-4}\bullet\frac{d}{dx}\left(1-2x\right)$$

$$=-3\left(1-2\varkappa\right)^{-4}\bullet\left(-2\right)$$

$$=\frac{6}{\left(1-2x\right)^4}$$

At any point (x,y) on the curve $x \ne 1/2$ and the slope of the tangent line is $\frac{dy}{dx} = \frac{6}{\left(1-2x\right)^4}$ where both the numerator and denominator as positive.