Chain Rule

-We can find the derivative of $y=\sin (x)$.
-We can also find $\frac{d y}{d x}$.of $x^{2}-4$
-But what about $y=\sin \left(x^{2}-4\right)$
-For this we need the Chain Rule, one of the most widely used rules.

Example

The function $y=6 x-10=2(3 x-5)$ is the composition of

$$
y=2 u \quad u=3 x-5
$$

How are the 3 derivatives related?

$$
\frac{d y}{d x}=6 \quad \cdot \frac{d y}{d u}=2 . \quad \frac{d u}{d x}=3
$$

Since, $6=3 \bullet 2$

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

Example

The polynomial $y=9 x^{4}+6 x^{2}+1=\left(3 x^{2}+1\right)^{2}$ is the composition of $y=u^{2}$ and $u=3 x^{2}+1$.
-Calculating the derivatives we get

$$
\frac{d y}{d u} \cdot \frac{d u}{d x}=2 u \cdot 6 x
$$

$$
=2\left(3 x^{2}+1\right) \cdot 6 x=36 x^{3}+12 x
$$

Also,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(9 x^{4}+6 x^{2}+1\right) \\
& =36 x^{3}+12 x
\end{aligned}
$$

Again,

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

-The derivative of the composition function $f(g(x))$ at x is the derivative of f at $g(x)$ times the derivative of g at x.

The Chain Rule

If f is differentiable at the point $u=g(x)$, and g is differentiable at x, then the composite function $(f \circ g)(x)=f(g(x))$ is differentiable at x and

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \circ g^{\prime}(x)
$$

-In Leibniz Notation if $y=f(u)$ and $u=g(x)$ then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

where $\frac{d y}{d u}$ is evaluated at $u=g(x)$.

Example

-An object moves along the x-axis so that its position at any time $t \geq 0$ is given by $x(t)=\cos \left(t^{2}+1\right)$. Find the velocity of the object as a function of t.
-We know velocity is $\frac{d x}{d t}$

$$
\begin{gathered}
x=\cos (u) \quad u=t^{2}+1 \\
\frac{d x}{d u}=-\sin u \\
\frac{d u}{d t}=2 t
\end{gathered}
$$

By the chain rule

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{d x}{d u} \cdot \frac{d u}{d t} \\
& =-\sin (u) \cdot 2 t \\
& =-\sin \left(t^{2}+1\right) \cdot 2 t \\
& =-2 t \sin \left(t^{2}+1\right)
\end{aligned}
$$

Repeated Use of the Chain Rule

-We can use the chain rule 2 or more times to find a derivative as needed.

Example-3 linked chains

Find $g^{\prime}(t)$ given $g(t)=\tan (5-\sin 2 t)$

$$
\begin{aligned}
& \quad g^{\prime}(t)=\frac{d}{d x}(\tan (5-\sin 2 t)) \\
& =\sec ^{2}(5-\sin 2 t) \cdot \frac{d}{d t}(5-\sin 2 t) \\
& =\sec ^{2}(5-\sin 2 t) \cdot\left(0-\cos 2 t \cdot \frac{d}{d t}(2 t)\right) \\
& =\sec ^{2}(5-\sin 2 t) \cdot(\cos 2 t \cdot 2) \\
& =-2 \cos (2 t) \sec ^{2}(5-\sin 2 t) \\
& \text { Slopes of Parameterized Curves }
\end{aligned}
$$

Finding $\frac{d y}{d x}$ Parametrically
If all three derivatives exist $\frac{d y}{d x}, \frac{d x}{d t}, \frac{d y}{d t}$ and $\frac{d x}{d t} \neq 0$

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}
$$

Example

Find the line tangent to the right-hand hyperbola branch defined parametrically by

$$
x=\sec t \quad y=\tan t \quad-\pi / 2<t<\pi / 2
$$

at the point $(\sqrt{2}, 1)$ where $t=\pi / 4$.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y / d t}{d x / d t} \\
& =\frac{\sec ^{2} t}{\sec t \tan t} \\
& =\frac{\sec t}{\tan t}=\csc t
\end{aligned}
$$

Setting $t=\pi / 4$ gives

$$
=\csc (\pi / 4)=\sqrt{2}
$$

The equation of the tangent line is

$$
\begin{aligned}
& y-1=\sqrt{2}(x-\sqrt{2}) \\
& y=\sqrt{2} x-1
\end{aligned}
$$

Power Chain Rule

If f is a differentiable function of u, and u is a differentiable function of x, then substituting $y=f(u)$ into the Chain Rule formula

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

leads to the formula

$$
\frac{d}{d x} f(u)=f^{\prime}(u) \frac{d u}{d x}
$$

Power Chain Rule

$$
\frac{d}{d x} u^{n}=n u^{n-1} \frac{d u}{d x}
$$

Example

-Find the slope of the line tangent to the curve $y=\sin ^{5} x$ at the point where $x=\pi / 3$.

$$
\begin{aligned}
& \frac{d y}{d x}=5 \sin ^{4} x \cdot \frac{d}{d x} \sin x \\
& =5 \sin ^{4} x \cos x
\end{aligned}
$$

The tangent line has the slope

$$
=5\left(\frac{\sqrt{3}}{2}\right)^{4}\left(\frac{1}{2}\right)=\frac{45}{32}
$$

Example

-Show that the slope of every line tangent to the curve $y=\frac{1}{(1-2 x)^{3}}$ is positive.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}(1-2 x)^{-3} \\
& =-3(1-2 x)^{-4} \cdot \frac{d}{d x}(1-2 x) \\
& =-3(1-2 x)^{-4} \cdot(-2)
\end{aligned}
$$

$$
=\frac{6}{(1-2 x)^{4}}
$$

At any point (x, y) on the curve $x \neq 1 / 2$ and the slope of the tangent line is $\frac{d y}{d x}=\frac{6}{(1-2 x)^{4}}$ where both the numerator and denominator as positive.

